Skip to content
AI资讯
AI大模型
AI营销
标签:
智谱AI
智谱版Sora开源爆火:狂揽4K Star,4090单卡运行,A6000可微调
智谱AI把自研打造的大模型给开源了。 国内视频生成领域越来越卷了。刚刚,智谱 AI 宣布将与「清影」同源的视频生成模型 ——CogVideoX 开源。短短几个小时狂揽 4k 星标。 代码仓库:https://github.com/THUDM/CogVideo 模型下载:https://huggingface.co/THUDM/CogVideoX-2b 技术报告:https://github.com/THUDM/CogVideo/blob/main/resources/CogVideoX.pdf 7 月 26 日,智谱 AI 正式发布视频生成产品「清影」,得到大家广泛好评。只要你有好的创意(几个字到几百个字),再加上一点点耐心(30 秒),「清影」就能生成 1440×960 清晰度的高精度视频。 官宣即日起,清影上线清言 App,所有用户都可以全方位体验。想要尝试的小伙伴可以去「智谱清言」上体验「清影」生视频的能力。 「清影」的出现被誉为是国内首个人人可用的 Sora。发布 6 天,「清影」生成视频数就突破百万量级。 PC 端访问链接:https://chatglm.cn/ 移动端访问链接:https://chatglm.cn/download?fr=web_home 为何智谱 AI 开源模型如此爆火?要知道虽然现在视频生成技术正逐步走向成熟,然而,仍未有一个开源的视频生成模型,能够满足商业级应用的要求。大家熟悉的 Sora、Gen-3 等都是闭源的。CogVideoX 的开源就好比 OpenAI 将 Sora 背后的模型开源,对广大研究者而言,意义重大。 CogVideoX 开源模型包含多个不同尺寸大小的模型,目前智谱 AI 开源 CogVideoX-2B,它在 FP-16 精度下的推理仅需 18GB 显存,微调则只需要 40GB 显存,这意味着单张 4090 显卡即可进行推理,而单张 A6000 显卡即可完成微调。 CogVideoX-2B 的提示词上限为 226 个 token,视频长度为 6 秒,帧率为 8 帧 / 秒,视频分辨率为 720*480。智谱 AI 为视频质量的提升预留了广阔的空间,期待开发者们在提示词优化、视频长度、帧率、分辨率、场景微调以及围绕视频的各类功能开发上贡献开源力量。 性能更强参数量更大的模型正在路上,敬请关注与期待。 模型 VAE 视频数据因包含空间和时间信息,其数据量和计算负担远超图像数据。为应对此挑战,智谱提出了基于 3D 变分自编码器(3D VAE)的视频压缩方法。3D VAE 通过三维卷积同时压缩视频的空间和时间维度,实现了更高的压缩率和更好的重建质量。 模型结构包括编码器、解码器和潜在空间正则化器,通过四个阶段的下采样和上采样实现压缩。时间因果卷积确保了信息的因果性,减少了通信开销。智谱采用上下文并行技术以适应大规模视频处理。 实验中,智谱 AI 发现大分辨率编码易于泛化,而增加帧数则挑战较大。因此,智谱分两阶段训练模型:首先在较低帧率和小批量上训练,然后通过上下文并行在更高帧率上进行微调。训练损失函数结合了 L2 损失、LPIPS 感知损失和 3D 判别器的 GAN 损失。 专家 Transformer 智谱 AI 使用 VAE 的编码器将视频压缩至潜在空间,然后将潜在空间分割成块并展开成长的序列嵌入 z_vision。同时,智谱 AI 使用 T5,将文本输入编码为文本嵌入 z_text,然后将 z_text 和 z_vision 沿序列维度拼接。拼接后的嵌入被送入专家 Transformer 块堆栈中处理。最后,反向拼接嵌入来恢复原始潜在空间形状,并使用 VAE 进行解码以重建视频。 Data 视频生成模型训练需筛选高质量视频数据,以学习真实世界动态。视频可能因人工编辑或拍摄问题而不准确。智谱 AI 开发了负面标签来识别和排除低质量视频,如过度编辑、运动不连贯、质量低下、讲座式、文本主导和屏幕噪音视频。通过 video-llama 训练的过滤器,智谱 AI 标注并筛选了 20,000 个视频数据点。同时,计算光流和美学分数,动态调整阈值,确保生成视频的质量。 视频数据通常没有文本描述,需要转换为文本描述以供文本到视频模型训练。现有的视频字幕数据集字幕较短,无法全面描述视频内容。智谱 AI 提出了一种从图像字幕生成视频字幕的管道,并微调端到端的视频字幕模型以获得更密集的字幕。这种方法通过 Panda70M 模型生成简短字幕,使用 CogView3 模型生成密集图像字幕,然后使用 GPT-4 模型总结生成最终的短视频。智谱 AI 还微调了一个基于 CogVLM2-Video 和 Llama 3 的 CogVLM2-Caption 模型,使用密集字幕数据进行训练,以加速视频字幕生成过程。 性能 为了评估文本到视频生成的质量,智谱 AI 使用了 VBench 中的多个指标,如人类动作、场景、动态程度等。智谱 AI 还使用了两个额外的视频评估工具:Devil 中的 Dynamic Quality 和 Chrono-Magic 中的 GPT4o-MT Score,这些工具专注于视频的动态特性。如下表所示。 智谱 AI 已经验证了 scaling law 在视频生成方面的有效性,未来会在不断 scale up 数据规模和模型规模的同时,探究更具突破式创新的新型模型架构、更高效地压缩视频信息、更充分地融合文本和视频内容。 最后,我们看看「清影」的效果。 提示语:「一艘精致的木制玩具船,桅杆和船帆雕刻精美,平稳地滑过一块模仿海浪的蓝色毛绒地毯。船体漆成浓郁的棕色,有小窗户。地毯柔软而有质感,提供了完美的背景,类似于广阔的海洋。船周围还有各种玩具和儿童用品,暗示着一个好玩的环境。这个场景捕捉到了童年的纯真和想象力,玩具船的旅程象征着在异想天开的室内环境中无尽的冒险。」 提示语:「镜头跟随一辆装着黑色车顶行李架的白色老式 SUV,它在陡峭的山坡上沿着松树环绕的土路加速行驶,轮胎扬起尘土,阳光照射在沿着土路飞驰的 SUV 身上,为场景投下温暖的光芒。土路缓缓弯曲向远方延伸,看不到其他汽车或车辆。道路两旁的树木都是红杉,点缀着一片片绿植。从后面看,汽车轻松地顺着弯道行驶,让人觉得它正在崎岖的地形上行驶。土路周围是陡峭的山丘和山脉,头顶是湛蓝的天空,上面飘着薄薄的云彩。」 提示语:「一片白雪皑皑的森林景观,一条土路穿过其中。道路两旁是被白雪覆盖的树木,地面也被白雪覆盖。阳光灿烂,营造出明亮而宁静的氛围。道路上空无一人,视频中看不到任何人或动物。视频的风格是自然风景拍摄,重点是白雪皑皑的森林之美和道路的宁静。」 提示语:「鸡肉和青椒烤肉串在烧烤架上烧烤的特写。浅焦和淡烟。色彩鲜艳」
智谱AI发布视频生成大模型,B站参与研发,亦庄提供算力
视频大模型进入百模大战。 今年是“视频生成”大模型爆发元年。在过去两个月,我们看到了快手可灵、商汤Vimi、Luma AI、爱诗科技Pixverse、Runway Gen-3等等视频大模型的你追我赶。 但上半年的视频生成大模型公司,往往只聚焦在视频生成这一个功能。 而下半年,大语言模型公司将逐渐跟随OpenAI的脚步,纷纷入场视频大模型,把语言模型与视频模型做大一统。 在备受瞩目的“大模型六小强”中,动作最快的是智谱AI。 今天上午,这家清华系大模型独角兽上线视频生成大模型产品“清影”,直接面向所有用户开放,支持文生视频与图生视频。 在智谱清言PC或App里输入一段文字或图片后(即Prompt),用户可以选择自己想要生成的风格,包括卡通3D、黑白、油画、电影感等,配上清影自带的音乐,就生成了充满AI想象力的视频片段;此外,“AI动态照片小程序”支持图生视频。 对于现在视频大模型领域的格局,张鹏认为大概也会像大语言模型一般,进入百家争鸣的格局。 在商业化策略上,清影目前的付费方案是:首发测试期间,所有用户均可免费使用;付费5元,解锁一天(24小时)的高速通道权益,付费199元,解锁一年的付费高速通道权益。智谱AI CEO张鹏表示:“现在的商业化仍处于非常早期的阶段,而且成本实际上也非常高,后面会根据市场的反馈做逐步迭代。” 清影API也同步上线智谱大模型开放平台,企业和开发者通过调用API的方式,体验和使用文生视频以及图生视频的模型能力。 清影的研发得到北京市的大力支持。海淀区是智谱AI总部所在地,为智谱AI开展大模型研发提供了产业投资、算力补贴、应用场景示范、人才等全方位支持;清影的训练依托亦庄高性能算力集群,在北京亦庄算力集群诞生,未来也将应用于北京亦庄广阔的高精尖产业集群,形成大模型赋能实体经济的新业态。 在生态合作上,bilibili作为合作伙伴也参与了清影的技术研发过程,并致力于探索未来可能的应用场景。同时,合作伙伴华策影视也参与了模型共建。 1.30秒将任意文字生成视频 清影的具体效果如何?先看一下官方发布的几支视频案例(都配上了音乐)。 文生视频: 提示词:低角度向上推进,缓缓抬头,冰山上突然出现一条恶龙,然后恶龙发现你,冲向你。好莱坞电影风 提示词:在霓虹灯闪烁的赛博朋克风格城市夜景中,手持跟拍的镜头缓缓推近,一个机械风格的小猴子正在用高科技工具维修,周围是闪烁的电子设备和未来主义的装修材料。赛博朋克风格,气氛神秘,4K高清。 提示词:广告拍摄视角,黄色背景,白色桌子上,画面中一个土豆被扔下来变成一份薯条 图生视频 提示词:古典美女 提示词:一条龙的口中喷射出火焰,烧毁了一个小村庄 提示词:水豚慵懒地用吸管喝可乐,扭头朝向相机 清影的视频生成时长为6s左右,输入提示词之后需要等待时间是30s左右。张鹏表示,这个生成速度在业内已经算非常快了。 张鹏认为,多模态模型的探索还处于非常初级的阶段。从生成视频的效果看,对物理世界规律的理解、高分辨率、镜头动作连贯性以及时长等,都有非常大的提升空间。从模型本身角度看,需要更具突破式创新的新模型架构,它应该更高效压缩视频信息,更充分融合文本和视频内容,贴合用户指令的同时,让生成内容真实感更高。 2.自研DiT架构 清影底座的视频生成模型是CogVideoX,它将文本、时间、空间三个维度融合起来,参考了Sora的算法设计。CogVideoX也是一个DiT架构,通过优化,CogVideoX 相比前代(CogVideo)推理速度提升了6倍。 智谱主要分享了CogVideoX 的三个技术特点:内容连贯性、可控性、模型结构。 首先,为了解决内容连贯性的问题,智谱自研了一个高效的三维变分自编码器结构(3D VAE),将原视频空间压缩至2%大小,以此减少视频扩散生成模型的训练成本及训练难度。 模型结构方面,智谱采用因果三维卷积(Causal 3D convolution)为主要模型组件,移除了自编码器中常用的注意力模块,使得模型具备不同分辨率迁移使用的能力。 同时,在时间维度上因果卷积的形式也使得模型具备视频编解码具备从前向后的序列独立性,便于通过微调的方式向更高帧率与更长时间泛化。 从工程部署的角度,智谱基于时间维度上的序列并行(Temporal Sequential Parallel)对变分自编码器进行微调及部署,使其具备支持在更小的显存占用下支持极高帧数视频的编解码的能力。 第二点是可控性。现在的视频数据大多缺乏对应的描述性文本或者描述质量低下,为此智谱自研了一个端到端的视频理解模型,用于为海量的视频数据生成详细的、贴合内容的描述,这样可以增强模型的文本理解和指令遵循能力,使得生成的视频更符合用户的输入,能够理解超长复杂prompt指令。 这也是Sora用到的方式。OpenAI用DALL·E 3 的“重新字幕技术”(re-captioning technique)训练了一个高度描述性的字幕生成器模型,然后使用它为训练数据集中的视频生成文本字幕。此外,OpenAI 还利用GPT将简短的用户提示转换为较长的详细字幕,然后发送到视频模型。 最后是智谱自研的一个将文本、时间、空间三个维度全部融合起来的transformer架构,它摒弃了传统的cross attention模块,而是在输入阶段就将文本embedding和视频embedding concat起来,以便更充分地进行两种模态的交互。 然而两种模态的特征空间有很大差异,智谱通过expert adaptive layernorm对文本和视频两个模态分别进行处理来弥补这一差异,这样可以更有效地利用扩散模型中的时间步信息,使得模型能够高效利用参数来更好地将视觉信息与语义信息对齐。 其中注意力模块采用了3D全注意力机制,先前的研究通常使用分离的空间和时间注意力或者分块时空注意力,它们需要大量隐式传递视觉信息,大大增加了建模难度,同时它们无法与现有的高效训练框架适配。 位置编码模块设计了3D RoPE,更有利于在时间维度上捕捉帧间关系,建立起视频中的长程依赖。 3.Scaling Law仍在发挥作用 智谱在AIl in大模型路线之初,就开始多模态领域相关布局。从文本,到图片再到视频,大模型对世界的理解逐渐复杂、逐渐多维。大模型通过对各种模态的学习,涌现出理解、知识和处理不同任务的能力。 智谱对于多模态大模型的研究可追溯到2021年。从2021年开始,智谱先后研发了CogView(NeurIPS’21)、 CogView2(NeurIPS’22)、CogVideo(ICLR’23)、Relay Diffusion(ICLR’24)、CogView3 (2024)。 基于CogView,团队研发基于大模型的文本到视频生成模型CogVideo,采用了多帧率分层训练策略生成高质量的视频片段,提出一种基于递归插值的方法,逐步生成与每个子描述相对应的视频片段,并将这些视频片段逐层插值得到最终的视频片段。这个工作引起脸书、谷歌、微软的广泛关注,在后面脸书的Make-A-Video、谷歌的Phenaki和MAGVIT、微软女娲DragNUWA、英伟达Video LDMs等视频生成模型工作中都有引用。 2024年5月,GLM大模型技术团队在ICLR 2024主旨演讲环节全面阐述了GLM大模型面向AGI三大技术趋势,原生多模态大模型在其中扮演重要角色:GLM大模型团队认为,文本是构建大模型的关键基础,下一步则应该把文本、图像、视频、音频等多种模态混合在一起训练,构建真正原生的多模态模型。 智谱全方位布局大模型系列产品,多模态模型始终扮演着重要角色。智谱已经验证了Scaling Law在视频生成方面的有效性,未来会在不断scale up数据规模和模型规模的同时,探究更具突破式创新的新型模型架构,更高效地压缩视频信息,更充分地融合文本和视频内容。 张鹏认为,未来大模型的技术突破方向之一就是原生多模态大模型,Scaling Law将继续在算法与数据两方面发挥作用。 “我们还没有看到技术曲线放缓的迹象。”张鹏表示。